
Mutagenesis

目的)

既存の遺伝子に PCR を利用して変異を導入する。

①点変異導入

方法)

Rit 中では DNA polymerase として PfuTurbo® DNA polymerase を使用しているが 私たちは PrimeSTAR® HS DNA polymerase(TaKaRa)を使用している。 配列によっては PrimeSTAR® GXL DNA polymerase(TaKaRa)を選択。

- ・ 2本鎖プラスミドを鋳型として使用する。
- ・ Thermal Cycling による変異導入後、鋳型プラスミドは DpnI によって切断、除去する。 この制限酵素 (DpnI) はメチル化・ヘミメチル化された DNA を切断するため、鋳型プラス ミドの調整には Dam+大腸菌株 (一般的に使われている大腸菌はほぼ Dam+) を使用すること。
- ・ プライマーは変異導入部位に対して2本の相補的合成プライマーを準備する。 完全一致である必要はなく、他の部分との相同性などから多少ずれてもよい

試薬)

- · PrimeSTAR® HS DNA polymerase; TaKaRa, Code no.R010A
- Dpn I; NEB, R0176S
- · ddH2O

手順)

1) プライマーの設計・発注

変異導入部位がプライマーのほぼ中央になるようにする。 可能であれば、制限酵素サイトができるようにすると確認が容易になる。 プライマーは 25-45mer で、TM 値が 78C以上になるようにする

Tm=81.5+0.41(%GC)-675/N-%mismatch

N:primer length in bases

Stratagene の HP で TM 値が計算できる。

http://www.stratagene.com/homepage/default.aspx

テクニカルサポート>technical toolbox>Mutagenesis>Stratagene Quikchange Primer Tm Calculator

2) 試薬調整

Template	$1\mul$	(total 5-50ng 要条件検討)
5x PrimeSTAR® Buffer	$10\mu\mathrm{l}$	
d NTP Mixure(2.5mM eac	eh) 4 μ l	
Primer1 (100ng/ μ l)	1.25μ l	Primer 濃度の単位に注意
Primer2 (100ng/ μ l)	1.25μ l	
ddH_2O	$32\mu\mathrm{l}$	他の試薬量によって調節する
PrimeSTAR®HS DNA Poly	ymerase(2.5U	$J/\mu l$) $0.5 \mu l$
Total	50 μ l	

*template が多いと、DpnI で消化されずに残り、mutant<template となることがある。

3) Thermal Cycling

温度	時間	サイクル数
98℃	30sec	1
98℃	10sec	<u>12</u>
55°C	5 sec	
68℃	1min/kb	
4℃	保存	1

*PCR の変性温度、変性・アニーリング時間条件は PrimeSTAR® HS DNA Polymerase の条件に従った。

*サイクル数・アニーリング温度は Quik Change®のプロトコールに従った。

*サイクル数は1塩基置換の場合。その他はQuik Change®のプロトコールを参照。

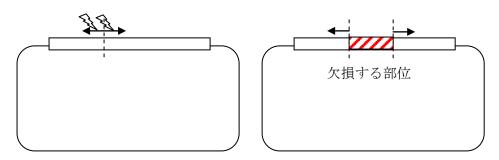
4) Dpn I によるテンプレートの切断

Thermal Cycling が終了した Sample に DpnI 1 µ l を加え、37℃1 時間。

*PCR 産物 10 μ1 を泳動してもバンドはほとんど見えない。泳動確認は不要。

5) 大腸菌にトランスフォーム、培養

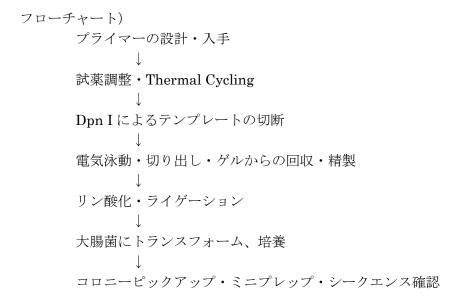
コンピテントセル (DH5 α など) $50 \mu 1$ に 4) $5 \mu 1$ をトランスフォームする。


6) コロニーピックアップ・ミニプレップ・シークエンス確認

成功例)

- ◆ 目的; 1 point mutation の導入
- ◆ template; 4.7kb のプラスミド DNA、50ng・10ng の2本で条件検討
- ◆ Primer; length=21mer, mismatch= 1base, GC=9mer, Tm=62.2℃ Tm 計算時に Mutation 部位は GC の中に含まない。
 Mutation 導入部位は、Primer の中央とした。
- ◆ PCR 産物の電気泳動ではバンドは確認できなかった。
- ◆ Template 量 50ng,10ng とも4コロニーずつピックアップ、制限酵素チェックはすべて OK
- ♦ Sequence を確認したところ template 50ng は4本すべて mutation なし template 10ng は4本すべて mutation あり
- \diamondsuit うち1本について必要部分を全 sequence 確認。目的以外の mutation はなかった。
- * Primer の設計は必ずしもプロトコールどおりでなくてもよいかもしれない。ただし、 template のほかの部位に対する相同性には注意が必要。50%程度の相同性でうまく いかなかった例もある。
- * 合成 Primer には合成時に予期せぬエラーが入っていることがあるので、Primer 部分も 含めた Sequence が必要。
- * 今回 PrimeSTAR® HS DNA Polymerase を使用した理由は、PfuTurbo® DNA polymerase と同等かそれ以上の正確性を持ち、より安価であったため。
- * すべてのステップが順調であれば、約1週間で mutant を得ることが可能。

②近傍2箇所に同時に点変異を導入, 欠損ミュータントの作製


方法)

ワンデイミュータジェネシス法を用いる

試薬)

- PrimeSTAR® HS DNA polymerase; TaKaRa, Code no.R010A 増幅産物のほとんどは平滑末端になっている
- Dpn I; NEB, R0176S
- T4 Polynucleotide Kinase; TaKaRa, Code No.2021A
 プライマーの 5'末端がリン酸化されている場合は不要。
- ・ T4DNA ligase& 2x buffer; Promega pGEM-T Vector Systems の ligase、buffer を流用

手順)

1) プライマーの設計・発注

変異導入部位がプライマーのほぼ中央になるようにする。

* 成功例: 32bp 離れた 2 塩基に mutation 導入を試みた場合

各 28mer (mutation 部位は primer 中央ではない)、Tm=78.1 \mathbb{C} と 66.9 \mathbb{C} の組合せ 欠損 mutant を作成する場合には、フレームに注意する。

*21mer, Tm=60-72℃で成功している。Fw,RvでTm が異なっても成功。

2) 試薬調整

Template $(2 ng/\mu l)$ $1 \mu 1$ 5x PrimeSTAR® Buffer $10 \mu l$ d NTP Mixure(2.5mM each) $4 \mu l$ Primer1 (10pmol) $1 \mu 1$ Primer2 (10pmol) $1 \mu 1$ ddH₂O $32.5 \,\mu$ l 他の試薬量によって調節する PrimeSTAR® HS DNA Polymerase(2.5U/ µ l) $0.5\,\mu$ l Total $50 \mu 1$

3) Thermal Cycling

温度	時間	サイクル数
98℃	30sec	1
98℃	10sec	30
55-65℃	5 sec	
72℃	1min/kb	
72℃	2min	1
4°C	保存	1

*アニーリング温度はプライマーの Tm による。要条件検討。

4) Dpn I によるテンプレートの切断

Thermal Cycling が終了した Sample に DpnI 1 µ l を加え、37℃1 時間。

5) 電気泳動・切り出し・ゲルからの回収・精製

電気泳動は Agarose gel/TAE で行う

ゲルからの回収・精製は市販の kit を使用

(私たちは Wizard SV Gel and PCR Clean-Up System(Promega 社)で回収・精製後、EtOH 沈殿をしている)

TE 10μ 1に溶解、うち 1μ 1を電気泳動でチェック

6) リン酸化・ライゲーション

PCR 産物	$1~\mu~\mathrm{I}$	
dH2O	$3\mu1$	
2x ligation buffer	5μ l	(ATP を含有)
T4 DNA ligase	0.5μ l	
T4 Polynucleotide Kinase	0.5μ l	
Total	10 μ l	•
↓ 25℃ 1時間		

- 7) 大腸菌にトランスフォーム、培養 コンピテントセル (DH5 α など) $100\,\mu$ 1 に全量をトランスフォーム。
- 8) コロニーピックアップ・ミニプレップ・シークエンス確認

参考文献;

- ①ワンデイミュータジェネシス
 - 今井嘉紀 実験医学別冊 クローズアップ実験法総集編(羊土社)2002年発行
- ② Imai,Y. et al.: Nucl. Acids Res., 19: 2785, 1991